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Models for correlated multifractal hypersurfaces

D. M. Tavares and L. S. Lucena
International Center for Complex Systems and Departamento de Fı´sica Teo´rica e Experimental—UFRN, Natal-RN 59078-970, Brazil

~Received 12 August 2002; published 24 March 2003!

We discuss and implement computer approximations of fractal and multifractal hypersurfaces. These hyper-
surfaces consist of reconstructions of a stochastic process in the real space from randomly distributed variables
in the discrete wavelet domain. The synthetic surfaces have the usual fractional Brownian motion as a par-
ticular case, and inherit the correlation structure of these fractals. We first introduce the one-dimensional
version of these surfaces that obey a weak self-affine symmetry. This symmetry appears in the wavelet domain
as a condition on the second moments of the probability distributions of the wavelet coefficients. Then we use
these relations to define the fractals and multifractals ind dimensions. Finally, we concentrate on the genera-
tion of samples of these hypersurfaces.
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I. INTRODUCTION

In recent years, a widespread interest on fractal conc
and in their use to investigate irregular data from expe
ments and simulations on various complex systems has
noticed@1–4#. This interest is due to the recognition that t
models based on differentiable manifolds are not well su
for the depiction of these harsh geometries. The fact is
the measured properties are extremely heterogeneous
for this reason, any differentiable approximation has nec
sarily a large amount of parameters. This precludes their
for expressing the regularities through simple relations,
even for indicating the existence of regularities. Fractal c
cepts just apply more directly to the important aspects
these seemingly intractable geometries. These aspects
mainly connected with two themes: scaling and correlatio
Due to chaos and roughness~nondifferentiability!, probabi-
listic characterization is intrinsic to the methodology f
studying such geometries, even when there are reason
believe that the underlying mechanisms are determinis
This is remarkably so in the investigation of fully develop
turbulence, or more generally in dealing with strange attr
tors @5–9#.

The existence of many cases in nature, where scale s
metries are present is a welcome fact. These cases ha
foremost attention and were the most investigated beca
they are examples of the importance of the scale symmet
and also because they are the simplest situations in w
nondifferentiable models are the most suited. Nature give
some entry points to this difficult region when yielding
simple models such as the diffusion limited aggregation@10#,
percolation @11,12#, or fractional Brownian motion~fBm!
@13#. The applicability of these models to a variety of me
sured physical quantities indicates that the assumed sim
scaling is in good agreement with the actual scaling in
these cases@1–4#, i.e, it establishes that a fractal dimensio
df is a very common characteristic of complex patterns.

Following this evidence that nondifferentiability often a
pears in conjunction with scale invariance, the first kind
configurations to be considered were the fractal sets. Fra
models presenting deterministic or random self-similarity
nowadays a standard in situations where the system pre
1063-651X/2003/67~3!/036702~8!/$20.00 67 0367
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no characteristic scale. However, in important situations,
scaling properties of the system vary with position, and
these cases, it is necessary to use more complicated ob
than a fractal@14–26#. In such systems, the scaling symm
try of fractals is broken by processes that involve interact
between scales giving rise to fluctuating cascades. The
able nondifferentiable objects with inhomogeneous sca
for modeling these latter cases are the multifractals@27#.

Multifractals are usually assimilated in the following co
struction @28–30#. Consider a setS ~that can be a fractal!,
and ballsBl(x) belonging to a covering ofS having norml.
A multifractal measure scales asm„Bl(x)…; l a(x), with a
point dependent exponent giving the singularity streng
This justifies the introduction of a partition of the suppo
composed of the setsSa5$xPS:a(x)5a%. The setsSa are
fractals indicating the configuration of the singularities w
strengtha. Each setSa has its own scaling properties, in pa
quantified by an exponentf (a) which was called the singu
larity spectrum. More precisely: letNl be the number of balls
in the covering of the support. LetNl(a) be the number of
balls that scales asl a. This number scales asNl(a);Nl

f (a)

; l 2 f (a). In summa, the strengtha gives the waym scales at
a point, and the spectrumf (a) gives the way the multiple
fractal setsSa scale. In a precise account,f (a) is the Haus-
dorff dimension of the setSa @28#. A function f :Rd→R can
also be treated in this way by associating to it a quan
defined in terms of a difference operatord l ,uf (x) or more
generally in terms of wavelet transforms@31#. Here l is the
norm of a covering with ballsBl(x) as in the case of mea
sures, andu is a fixed unit vector~we make a longer discus
sion on this directionality in Sec. III!.

The multifractals are first examples of physically impo
tant stochastic fields, in which full scale symmetry is broke
A general and simple way to consider effects that break s
symmetries is through the study of probability distributio
associated with the incremental process generating the
sidered stochastic fields. In particular, space-scale repre
tations are immediate options to achieve such results, as
will argue, and we choose here the discrete wavelet tra
form, both for its simplicity and computational efficienc
However, the continuous wavelet transform~CWT! may be
©2003 The American Physical Society02-1
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employed as well@25,26,30,32#. Such an approach is neede
because the usual search for spectra of scaling expon
allowed by techniques as the multifractal formalism, lack
necessary generality, giving insufficient information to sol
for example, the inverse fractal problem@29#. The singularity
spectrum is an important characteristic of the singular fu
tions, in situations in which it can be determined. Howev
if we face the problem of characterizing the stochastic fie
that is to say, of having a signature of it, the singular
spectrum is not enough. Moreover, it may not exist at
There is, of course, strong motivation for the study of ge
eralized scaling through exponents: the extension of the c
cept of universality to ample classes of physical syste
without self-similarity; but one may expect in advance th
this program has limitations. Then, it is clear that a way
characterizing the stochastic fields in general is necessa
is important to be able to distinguish the fields, and ha
indication on their scaling, thus opening a main road to
topics of synthesis and simulation, as we will exemplify. T
essential idea in our approach is that every stochastic
can be associated with definite probability distributions
wavelet coefficients, in the present case, discrete wavele
efficients. To every scale indexed byj, we have a distribution
Pj . If these distributions are known, one can generate
proximations of samples of the stochastic field by inve
transformation of random variables in the wavelet domai

Here, we use these notions as a background when in
ducing models for multifractal hypersurfaces. We assu
that these hypersurfaces are similar enough to fBm to al
the measurement of Hurst exponentsH. These models
present the same nonlocal behavior of a fBm, i.e., the s
two-point correlations, but do not fit in the same~non! dif-
ferentiability class. In recent works, similar models were f
mulated in terms of cascade statistics that are applicabl
turbulence and related phenomena@25,33#. Our models are
instead parametrized by the Hurst exponents, and by co
tions on the decay of the probability distribution functio
~PDFs! of discrete wavelet coefficients. In the hypersurfac
considered in this paper, definite long range correlations
anticorrelations appear associated with multifractality. T
also influences our method of analysis, which stresses a
termination of theH exponent, to be followed by the dete
tion of this multifractality. We point the connections of ou
procedures with the techniques based on the thermodyn
cal formalism, due to its role as a framework for importa
classes of multifractals.

The paper is organized as follows. Section II is devoted
the one-dimensional case and its properties. We present
various results that motivate our approach. In Sec. III,
discuss the generalization tod dimensions. We furnish ther
supplementary definitions and demonstrations, discuss
calculation of the singularity spectrum, and provide an al
rithm for obtaining samples of the hypersurfaces. Section
has some concluding remarks.

II. MODELS IN ONE DIMENSION

In the investigation of the so-called multifractal function
a standard procedure is to determine their singularity sp
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trum D(h), which is formally equivalent to thef (a) spec-
trum for singular measures. Here,h5h(t) is a local regular-
ity or Hurst exponent. LetPH(t) represent the value of a
random functionPH at timet. This local exponent relates t
the increments of the function through@30#

ud lPH~ t !u; l h(t), ~1!

where d lPH(t)[PH(t1 l )2PH(t). The singularity spec-
trum D(h) is the Hausdorff dimension of the setsSh
5$t:h(t)5h% @28#. This dimension defines how the join
probability densityp(h,l ) of ud lPH(t)u scales withl @6#,

p~h,l !; l 12D(h). ~2!

We assume that the symbolH represents the value ofh, for
which D(h) is maximum. This means thatH represents the
more frequent singularity strength. Note that if the suppor
the function isR, and if it is everywhere singular, the
D(H)51.

Since the importance ofD(h) was recognized in studie
of turbulence, several methods have been developed fo
measurement. The more elaborate ones consider the sc
exponentszq of structure functions@27#

Sq~ l ![E dt ud lPH~ t !uq, ~3!

or, more recently, the scaling exponentstq of the partition
function

Zq~ l ![( maxu^c l ,tuPH&uq, ~4!

where^c l ,tuPH& is a CWT ofPH @29,30#. The method based
on the CWT singles out, at every scalel, the places where the
modulus of the CWT reaches local maxima. Then a skele
of lines of maxima is constructed from large to small scal
The sum in Eq.~4! is calculated on this skeleton only. Th
spectrumD(h) is found from Legendre transforms ofzq , or
tq . The technique is as follows. Due to the nonhomogene
fractality, in the limit l→0, one can writeZq( l ) in the
asymptotic form

Zq~ l !;E dm~h!l [hq2D(h)] . ~5!

The term with the minimum exponent predominates, so
arrive at the Legendre transform

tq5min
h

@hq2D~h!# ~6!

that can be inverted to give

D~h!5min
q

@hq2tq#. ~7!

By this device, we have the spectrum in terms of the ex
nentstq . The same argument holds when using struct
functions. The distinctive feature of a strictly multifract
motion is that the support ofD(h) has more than one ele
ment. In the thermodynamical formalism, this leads to no
2-2
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linear dependences ofzq or tq with q. General conditions
and some criticism with respect to this technique can
found in Refs.@34,35#. The multifractal formalism for func-
tions is built on such quantities asud l f (t)u or u^c l ,tu f &u, de-
noted asm f . Considering the multifractal as a stochas
process,m f is to be seen as a definition of its incremen
process in the sense that

m f[PH* C l t , ~8!

whereC l t is a filter that cuts off any divergence in the lo
frequency power spectrum ofPH , l is an increment param
eter ~scale!, t is a location parameter, and the star mea
convolution. In the case of fBm, wavelets and the increm
operator are examples of such filters@36#.

We wish to study a class of multifractal motionsPH that
possess a weakened form of self-affinity. ThePH motions
we are concerned here satisfy the following assumptio
First, they have the ensemble average

ud lPHu25sH
2 l 2H. ~9!

Second,

PH~0!50. ~10!

From these assumptions, it follows that the two-point cor
lation of thePH motion is

PH~ t !PH~s!5
sH

2

2
~ utu2H1usu2H2ut2su2H!. ~11!

This motion can be seen as a generalization of fBm tha
not have zero mean, nor Gaussian statistics. The first co
quence is that the motion is not statistically self-affine
general. Indeed, one easily proves from Eq.~11! that

PH~ct!PH~cs!5cHPH~ t !cHPH~s!, ~12!

i.e., the motionPH(ct) has the same two-point correlation
the motioncHPH(t). When the motion is self-affine, Eq
~12! holds necessarily, but the converse is not true. In fa
for the self-affine case, we have the stronger property

PH~ct!5cHPH~ t !, ~13!

where the equality means that both sides have the same
tribution.

We can deduce exact spectra for thePH motion if we use
discrete wavelet bases. Wavelets are generally assoc
with time-scale representations. Letf be aL2(R) function. It
is shown in Ref.@36# the existence of complete sets$c jn%
such thatf can be expanded as

f ~ t !5 (
j 52`

j 5`

(
n52`

n5`

ajnc jn~ t !, ~14!

the form of the functionscn j being
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c jn~ t !5
1

A2 j
cS t22 jn

2 j D . ~15!

These functions are called discrete wavelets, and are sq
integrable with zero mean, at least. The functionc generat-
ing the wavelets is called the mother wavelet. Often, clas
of wavelets are employed which are orthogonal to polyno
als up to a certain degreek, with the purpose of detrending
data, and studying singularities;k is the number of vanishing
moments of the wavelet. The set$c jn% is a wavelet basis,
and the discrete wavelet transform off to this basis is written

ajn5D jn f 5^c jnu f &, ~16!

and gives information on the behavior of the functionf at
scale 2j and time 2jn.

It is possible to work with restrictions of the considere
motions asL2(I ) functions, withI ,R,IÞR. We make such
restrictions by noting that experiments or simulations
data during a timeT, with a sample intervalt, so that the
number of sample points isN5T/t. For convenience, we
make T51, and t51/N522J. Using this information in
expression~14!, and assuming compact support for th
wavelets, we can write

pH~ t !5aff~ t !1 (
j 52J11

j 50

(
n50

n522 j 21

ajnc jn~ t !, ~17!

wherepH is the restriction ofPH to @0,1#, af[^fupH&, and
the functionf is defined as the linear combination

f~ t !5 (
j 51

j 5`

cjc j 0~ t ! ~18!

that can be determined from its Fourier transform

f̂~v!5
A2

ĝ~v!
ĉ~2v!. ~19!

Hereg is the high pass mirror filter associated with the co
responding multiresolution@36#. In expression~18!, the func-
tions c j 0 were also conveniently restricted to the interv
@0,1#. The functionf is called the scaling function.

We will now use Haar wavelet basis to calculate an ex
wavelet spectrum forPH . The Haar wavelets are periods o
square waves written as

hjn~ t !5
1

A2 j H 1, tPI jn
1

21, tPI jn
2 ,

~20!

where

I jn
1 5@2 jn,2j~n11/2!#,

I jn
2 5@2 j~n11/2!,2j~n11!#. ~21!

For Haar wavelets, one proves, using the expressions~11!
and ~20!, that
2-3
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s j
2~H !5uD jnPHu25CH2(2H11) j , ~22!

whereD jn f [^hjnu f & and

CH5
sH

2 ~12222H!

~2H11!~2H12!
. ~23!

Expression~22! gives us the scale dependent power sp
trum in the Haar basis. Note that if an effective frequen
uvu21[2 j is substituted, one finds the expected 1/uvu2H11

relation. Except for the constant, this spectrum has the s
well behaved dependence on scale forPH using any discrete
wavelet ~see Refs.@36,37#, and references therein for mor
details on this aspect!.

At every scale 2j , we can look at the distributionPj of the
coefficientsajn . For the monofractals,Pj collapses to a
unique probability distribution, after the coefficients are n
malized by the standard deviations j . In other situations,
this is not so because the only constraint expression~22!
gives is on the second moments of these distributions. So
have a great latitude to choose models presenting multif
tality, without affecting the correlations that are essentia
linked to H by the expression~11!. However, there is the
question: what are the general conditions onPj in order that
the series~17! be convergent, whenJ→`?

The convergence issue is directly related with the sta
tics of rare high valued fluctuations. If they are too freque
we can have divergence caused by their repeated occurr
in the sum. The probability of the event setV j of such rare
fluctuations can be calculated for each scalej as

r j5E
2`

2aj
dx Pj~x!1E

aj

`

dx Pj~x!, ~24!

with aj[ms j , m being a natural number as big as o
needs. Now the condition for convergence can be expre
using the Borel-Cantelli lemma. If

(
j 52`

0

r j,`, ~25!

then Prob(V j , infinitely often)50. In such a case, for al
most all realizations, there is a maximum absolute value
the coefficients which does not exceedaj . In consequence,

(
j

(
n

ajn
2 <(

j
aj

25m2CH(
j

2(2H11) j,`, ~26!

which proves convergence@33#.
It remains to see in which cases the condition for conv

gence is valid. Using the expressions~24! and ~25!, one
draws the conclusion that the convergence happens if,
only if, the function

F~x![(
j

Pj~x! ~27!

is integrable in both intervals (2`,2aj # and @aj ,`). The
fulfillment of this equivalent condition depends on the dec
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of the functionsPj . Among all these functions, we ca
single out the one with the slowest decay whenx→`, noted
asF1, and that with the slowest decay whenx→2`, noted
as F2. For the rare events, the functionF behaves asymp
totically asF1 or F2. Thus, the smallest acceptable dec
for these last functions, in order that convergence occurs

F1~x!;
1

x11«1 , F2~x!;
1

~2x!11«2 , ~28!

with «6.0 being small numbers. Following this result, w
assume that noPj decays slower than that indicated in th
above expression. This assumption allows for a numbe
physically important cases, as the ones presenting expo
tial tails, not to speak of the Gaussian case~fBm! @21,22,26#.

The literature is plenty of works, in which Hurst expo
nents are used to characterize complex motions. The ab
discussion indicates that, with great generality, these ex
nents are only connected with the scaling of second m
ments, and this is the only information that can be dra
from linear fits. The fact is that with this single measureme
one has very few interpretive elements on the physics of
process because one cannot determine the degree of sym
try involved. The physical process generating a fractal m
tion must be much simpler, due to the self-affinity, than
the multifractal case, where something (Pj ) does change
with scale. Since by the value of the Hurst exponent o
cannot quantify the symmetry breaking effect that is tak
place, no precise judgment can be made about the sca
and in consequence about its implications for the mec
nisms of the process.Ulterior information can be obtained
by considering the probability distributions of discrete wav
let coefficients. The minimum gain with this simple proc
dure is to clarify the properties of the complex motion.
have this point clear, consider Fig. 1. There one finds in~a! a

FIG. 1. Monofractal~a! and multifractal~b! motions generated
with SRA and mSRA algorithms. These samples have 216 points
and were produced with the same seed for the random num
generator, and correspond to sample number 15 from the 50 ge
ated in each group.
2-4
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sample of fBm generated using the successive random a
tions ~SRA! method@38#. The data for~b! is from a modified
version that generates multifractals called here the multifr
tal SRA ~mSRA!. The data for the fractals and multifracta
were generated using the same seeds for the random nu
generator, and those in the figures are numbered 15 of a
of 50 samples in each group. All 100 samples have16

points. Figure 2 contains two high quality linear fits
log2sj

2 versusj, one for each of the selected samples. Th
plots allow one to find the Hurst exponent using express
~22!. A result of such estimate for all samples is shown
Fig. 3. The excellent fit presented does not quantify
qualify the reported origins~SRA and mSRA! of the two
groups, except for the fact that they have diverse, tho
near, values for the Hurst exponent.

The probability densitiesPj of discrete wavelet coeffi-
cients are shown in Fig. 4 for the monofractals and in Fig

FIG. 2. Linear fits for the second moment of the wavelet co
ficients. In~a! for sample number 15 of the SRA group, and in~b!
for sample number 15 of the mSRA group.

FIG. 3. Hurst exponents for all samples generated. The ex
nents were calculated using expression~22!. Those in~a! corre-
spond to the SRA group, and those in~b! to the mSRA group.
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for the multifractals. These statistics were obtained from
wavelet coefficients of all samples in each group, and
differences are noticeable. In Fig. 4, the data is well rep
sented by Gaussians~appearing in the semilog graph as p
rabolas! with the same variances of the determined PD
making clear that the first group is self-affine symmetric.
Fig. 5, exponential tails appear showing that the PDFs ha
smaller decay if compared with the Gaussian case~intermit-
tency appears!. In Fig. 6, the variation of the kurtosis of th
probability distributions with the scale is shown for th
monofractal and multifractal cases. As expected, the mu
fractals have pronounced variation with scale. So this gro
presents only a weak self-affinity given by expression~12!.
Now one can be sure that the data were not produced thro
the same mechanisms~in our case, algorithms! or that the

-

o-

FIG. 4. Probability distributionsPj of the wavelet coefficients
ajn in a semilog graph, for the group generated with the SRA al
rithm. The parabolas are Gaussians with the same variance o
distributions.

FIG. 5. Probability distributionsPj of the wavelet coefficients
ajn in a semilog graph, for the group generated with the mS
algorithm. The parabolas are Gaussians with the same varianc
the distributions. Note the increase in the probability of high flu
tuations.
2-5
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D. M. TAVARES AND L. S. LUCENA PHYSICAL REVIEW E67, 036702 ~2003!
system was not in the same regime when they were m
sured. What is interesting is that this certainty is reache
very low cost because just a fast wavelet transform~FWT!,
an O(n) algorithm, is used to obtain the discrete wave
coefficients. It is important to mention that one can also
the FWT to estimate the singularity spectrumD(h), even
though the more precise wavelet formalism to this end
based on the CWT. The essence of the procedure remain
the same as the referred method, except that instead o
maxima line representation one uses a discrete wavelet
resentation, with gain in efficiency, which can be helpful f
large data. We do not go further on this issue because ex
sive information can be found elsewhere@25,29,30,33#.

III. MULTIFRACTAL HYPERSURFACES

We will now proceed with the generalization of the pr
viously discussed motion tod dimensions. The importan
new element introduced whend.1 is direction. We have
seen that in one dimension, it is possible to make an a
ciation of every processf with an incremental processm f . In
higher dimensions, the straightforward generalization ofm f
is a quantitym f ,û which, in general, depends on the directi
through the unit vectorû. After that, we can use the multi
fractal formalism to find direction dependent singular
spectra. The incremental process now scales asm f ,û

; l h(x,û), and the sets of fractals corresponding to this m
tifractal areSh,û5$xPS:h(x,û)5h%, whereS is the support.
So, an appropriate generalization of theD(h) singularity
spectrum is a functionD(h,û) for the scaling exponent o
the setsSa,û . This spectrum takes into account the regular
of f, including direction effects~compare with the formula-
tion in Ref. @32#!. The Hölder exponents correspond to th
dominant scaling of the function at a point and can be fou
from h(x,û) using the relation

FIG. 6. Kurtosis of probability distributionsPj of the wavelet
coefficientsajn in a semilog graph, for the monofractals and for t
multifractals. The kurtosis for the multifractals presents pronoun
variation, indicating change of the distribution with scale.
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h~x![min
û

h~x,û!. ~29!

Following this logic, the problem of finding theh(x,û) spec-
trum reduces to that of finding the scaling of all unequal s
Sa,û . A multifractal function is then characterized by th
existence of such unequal sets. In particular, one can h
the situation in which the Ho¨lder exponenth(x) is homoge-
neous, but the direction associated to it varies from poin
point in a complicated manner. A cut through such a hyp
surface would reveal its multifractal nature that is not ma
fested by using theD(h) spectrum only.

We suggest here the need of this complete directiona
for a full characterization of the spectra of hypersurfac
This can be achieved by using a direct generalization of
structure function method, in whichd l ,ûf (x)[ f (x1 l û)
2 f (x), and one searches for the scaling exponentszq,û of

Sq,û~ l ![E ddxud l ,ûf ~x!uq, ~30!

when l→0. The wavelet method can be generalized by c
sidering the transform

Wl ,x0 ,ûf ~x![E ddx c l ,x0 ,û~x! f ~x! ~31!

with

c l ,x0 ,û~x![û•¹F 1

Al
FS x2x0

l D G . ~32!

The functionF is a smoothing kernel. The partition functio
is then written

Zq,û~ l ![( maxu^c l ,x0 ,ûu f &uq, ~33!

which scales with exponenttq,û ~the sum is on the support o
the local maxima of the modulus of the wavelet transform!.
Observe that, as far as there are only point singularities, th
is no degeneracy of the is maxima. In each scale they
countable, so that the sum in expression~33! is well defined.
The case with line singularities or more complex degene
singularities are not appropriately dealt using wavelets~for
the sake of spectral characterization!. Probably, a correct way
to take into account these situations is by using analyz
functions such as ridgelets or curvelets@39,40#.

In the explained context, a multifractal function is cha
acterized by the existence of nonlinearzq,û or tq,û , for some
direction û. When these exponents are linear functions oq
but vary with direction, we have only the anisotropy of th
scaling properties. The Legendre transforms from which o
calculates theD(h,û) spectrum are

D~h,û!5min
q

~qh2zq,û1d!, ~34!

or

d
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D~h,û!5min
q

~qh2tq,û!. ~35!

Let us now introduce, using the inverse discrete wave
transform, a class of multifractal hypersurfaces correspo
ing to the multifractal motion studied in the Sec. II. A su
able point of departure is the known spectrum for the fBm
d dimensions,

S~v!;
1

uvu2H1d
. ~36!

From this spectrum, we expect that the second moment
the wavelet coefficients scale as 2(2H1d) j . To generate an
fBm in d dimensions, one just needs to produce the wav
coefficients with the Gaussian distributions at every sc
having variances proportional to 2(2H1d) j , then transform to
the real space.

Along the same line, we define thePH(x) hypersurface,
wherex5(x1 , . . . ,xd), from wavelet coefficients. This ca
be formalized as follows. Thed dimensional discrete wave
lets are functions having the form

c jn
« ~x!5

1

A2d j
c«S x122 jn1

2 j
, . . . ,

xd22 jnd

2 j D , ~37!

wheren[(n1 , . . . ,nd)PZd, and

c«[c«1
•••c«d, ~38!

with «[(«1 , . . . ,«d)P$0,1%d being a direction index. The
function c0[f, a one-dimensional scaling function corr
sponding to a one-dimensional discrete wavelet basis,
c1[c is the mother wavelet. This construction provides
separable orthonormal wavelet basis for the spaceL2(Rd)
@36#. The order of the« indices is given by the natural se
quence of the corresponding binary numbers. When«50,
c« is thed-dimensional scaling function. The (2d21) func-
tions formed when«Þ0 are thed-dimensional mother wave
lets. Let p be the number of 1s in a « index. The number
g[p21, p>1 specifies the diagonal character of the as
ciated mother wavelet, so thatg50 means the wavelet doe
not follow a diagonal, forg51, it is oriented along a diag
onal of a square, forg52, it is oriented along a diagonal o
a cube, and so on.

The hypersurfacePH(x) is now defined through the infi
nite series

PH~x![(
j

(
n

(
«

ajn
« c jn

« , ~39!

where the coefficientsajn
« are distributed according the PDF

Pj
« , where«Þ0. In d.1 dimensions, there is more freedo

when putting conditions on these PDFs than in one dim
sion. Here we may also have the situation in which differ
directions have different values ofH. Accordingly, we define
the indexH[(H1 , . . . ,H2d21) such that there is one valu
of H for each wavelet orientation. This is a natural way
03670
t
d-

of

et
le

nd

-

-
t

introduce anisotropy in the hypersurfaces. The condition
the second moments of the distributionsPj

« is generalized to

uajn
« u2;2(2H«1d) j . ~40!

Finally, we note that, to assure the convergence of the se
the PDFs of the coefficients must be subjected to the s
condition as in the one-dimensional case. The proof is ea
done by considering each direction separately, and using
same argument given in Sec. II.

Figure 7 shows examples of anisotropic bidimensio
fBm obtained with this method. The probability distribution
Pj

« are Gaussians. Following the assumed ordering,H1

5H01 is related to the horizontal,H25H10 to the vertical,
andH35H11 to the diagonal. The first row has one case
strongly anticorrelated fBm, followed by a strongly corr
lated fBm, that are isotropic. In the second and third row
one sees the results of introducing anisotropy by mix
strong correlation and anticorrelation. In the second row,
vertical direction has the contrasting Hurst exponent. In
third row, this role is played by the diagonal. This figu
provides some illustration of the possible textures obtain
in limiting conditions, but it is clear that all intermediat
combinations are possible in practice.

FIG. 7. Fractal surfaces generated by inverse FWT. The res
tion is N5512 in all cases. The Hurst exponents are given byH
5(H01,H10,H11). The first row presents the isotropic strongly a
ticorrelated and strongly correlated cases. The second row m
correlation and anticorrelation, with contrasting Hurst exponen
the vertical direction. In the third row, the contrast is in the diag
nal.
2-7
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IV. CONCLUSION

We have discussed the use of the discrete wavelet tr
form as a means to produce computer generated multifra
hypersurfaces. These multifractals present a correla
structure similar to the fBm, and can be anisotropic. They
expected to be useful in areas where stochastic fields
long range correlations are employed, e.g., in the geost
tics of large scale porous media@41#, in growth phenomena
@42,43#, in turbulence@27,44#, and in economics@45#. We
also point the possibility of using this kind of technique as
powerful method for characterization of scaling in gener
-

tt.

f

03670
s-
tal
n
e
th
is-

l.

Our examples show how one can obtain information on
fects that break an exact self-similarity or self-affinity. Th
methodology could even be carried to cases where s
breaks dominate scaling, as for example, when conside
the seafloor surface@46#.
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