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Models for correlated multifractal hypersurfaces
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We discuss and implement computer approximations of fractal and multifractal hypersurfaces. These hyper-
surfaces consist of reconstructions of a stochastic process in the real space from randomly distributed variables
in the discrete wavelet domain. The synthetic surfaces have the usual fractional Brownian motion as a par-
ticular case, and inherit the correlation structure of these fractals. We first introduce the one-dimensional
version of these surfaces that obey a weak self-affine symmetry. This symmetry appears in the wavelet domain
as a condition on the second moments of the probability distributions of the wavelet coefficients. Then we use
these relations to define the fractals and multifractald dimensions. Finally, we concentrate on the genera-
tion of samples of these hypersurfaces.
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[. INTRODUCTION no characteristic scale. However, in important situations, the
scaling properties of the system vary with position, and in
In recent years, a widespread interest on fractal concepthese cases, it is necessary to use more complicated objects
and in their use to investigate irregular data from experithan a fracta[14—2§. In such systems, the scaling symme-
ments and simulations on various complex systems has bediy of fractals is broken by processes that involve interaction
noticed[1-4]. This interest is due to the recognition that the between scales giving rise to fluctuating cascades. The suit-
models based on differentiable manifolds are not well suitechble nondifferentiable objects with inhomogeneous scaling
for the depiction of these harsh geometries. The fact is thefor modeling these latter cases are the multifradtag.
the measured properties are extremely heterogeneous, andmultifractals are usually assimilated in the following con-
for this reason, any differentiable approximation has necesstryction[28—3(. Consider a se8 (that can be a fractgl
sarily a large amount of parameters. This precludes their usghg pallsB,(x) belonging to a covering d having norml.
for expressing _the regula_lrltles through smple relations, O multifractal measure scales %(B|(X))~|a(x), with a
even for indicating the existence of regularities. Fractal cony ;. dependent exponent giving the singularity strength.

cepts just apply more directly to the_ Important aspects Okryyq justifies the introduction of a partition of the support
these seemingly intractable geometries. These aspects ar

; . ) i . Smposed of the se§,={xe S:a(x)=a}. The setsS, are
mainly connected with two themes: scaling and correlatlonsf tals indicating th p i f the sinqularit ith
Due to chaos and roughne&sondifferentiability, probabi- ractais indicating the configuration of the singularities wi
listic characterization is intrinsic to the methodology for S”engt_h“- Each seB, has its own scaling properties, n part
studying such geometries, even when there are reasons fyfantified by an exponeri{«) which was called the singu-
believe that the underlying mechanisms are deterministidrity spectrum. More precisely: & be the number of balls
This is remarkably so in the investigation of fully developedin the covering of the support. Lé{,(a) be the number of
turbulence, or more generally in dealing with strange attracballs that scales as'. This number scales a¢,(a)~ N/
tors [5-9. ~1~® In summathe strengthy gives the wayu scales at

The existence of many cases in nature, where scale syna point, and the spectruri{«) gives the way the multiple
metries are present is a welcome fact. These cases had tfractal setsS, scale. In a precise accourif,«) is the Haus-
foremost attention and were the most investigated becaustorff dimension of the se$, [28]. A function f:R— R can
they are examples of the importance of the scale symmetrieg)so be treated in this way by associating to it a quantity
and also because they are the simplest situations in whictlefined in terms of a difference operatér,f(x) or more
nondifferentiable models are the most suited. Nature give ugenerally in terms of wavelet transfori3l]. Herel is the
some entry points to this difficult region when yielding to norm of a covering with ball8,(x) as in the case of mea-
simple models such as the diffusion limited aggregaftid, sures, and is a fixed unit vectofwe make a longer discus-
percolation[11,12, or fractional Brownian motionfBm)  sion on this directionality in Sec. )

[13]. The applicability of these models to a variety of mea- The multifractals are first examples of physically impor-
sured physical quantities indicates that the assumed simptant stochastic fields, in which full scale symmetry is broken.
scaling is in good agreement with the actual scaling in allA general and simple way to consider effects that break scale
these casell—4], i.e, it establishes that a fractal dimension symmetries is through the study of probability distributions
d¢ is a very common characteristic of complex patterns.  associated with the incremental process generating the con-

Following this evidence that nondifferentiability often ap- sidered stochastic fields. In particular, space-scale represen-
pears in conjunction with scale invariance, the first kind oftations are immediate options to achieve such results, as we
configurations to be considered were the fractal sets. Fractatill argue, and we choose here the discrete wavelet trans-
models presenting deterministic or random self-similarity ar€orm, both for its simplicity and computational efficiency.
nowadays a standard in situations where the system presert®wever, the continuous wavelet transfo(@WT) may be
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employed as well25,26,30,32 Such an approach is needed trum D(h), which is formally equivalent to thé(«) spec-
because the usual search for spectra of scaling exponents,m for singular measures. Hettes h(t) is a local regular-
allowed by techniques as the multifractal formalism, lack theity or Hurst exponent. Lelly(t) represent the value of a
necessary generality, giving insufficient information to solve,random functioril,, at timet. This local exponent relates to
for example, the inverse fractal problé@8]. The singularity  the increments of the function througg0]

spectrum is an important characteristic of the singular func-

tions, in situations in which it can be determined. However, |6 (t)[~ 1", (1)

if we face the problem of characterizing the stochastic field, ) )

that is to say, of having a signature of it, the singularityWhere ailly(t)=II,,(t+1)—II4(t). The singularity spec-
spectrum is not enough. Moreover, it may not exist at allf'um D(h) is the Hausdorff dimension of the sef§,
There is, of course, strong motivation for the study of gen-={t:nN(t)=h} [28]. This dimension defines how the joint
eralized scaling through exponents: the extension of the corrobability densityp(h, 1) of | 11,(t)| scales withl [6],

cept of universality to ample classes of physical systems (h,1)~11-D(h) @
without self-similarity; but one may expect in advance that p(h, '

this program has limitations. Then, it is clear that a way of\ye assume that the symb represents the value f for
characterizing the stochastic fields in general is necessary. [fhich D(h) is maximum. This means that represents the

is important to be able to distinguish the fields, and haven e frequent singularity strength. Note that if the support of
indication on their scaling, thus opening a main road to thethe function isR, and if it is everywhere singular, then
topics of synthesis and simulation, as we will exemplify. Theg(H) -1

essential idea in our approach is that every stochastic fiel

can be associated with definite probability distributions of since the importance db(h) was recognized in studies

of turbulence, several methods have been developed for its

wavelet coefficients, in the present case, discrete wavelet COreasurement. The more elaborate ones consider the scaling
efficients. To every scale indexed Qywe have a distribution exponents’ o.f structure function§27]
q

P;. If these distributions are known, one can generate ap-
proximations of samples of the stochastic field by inverse
transformation of random variables in the wavelet domain. Sq(l)Ef dt| T (1)]9, ()]
Here, we use these notions as a background when intro-
ducing models for multifractal hypersurfaces. We assumeyr, more recently, the scaling exponentsof the partition
that these hypersurfaces are similar enough to fBm to allovfynction
the measurement of Hurst exponertts These models
present the same nonlocal behavior of a fBm, i.e., the same
two-point correlations, but do not fit in the sarfreon) dif- Zy(h=2 max(yy T, 4
ferentiability class. In recent works, similar models were for-
mulated in terms of cascade statistics that are applicable twhere(y, |/I1,) is a CWT ofII, [29,30. The method based
turbulence and related phenomdi2®,33. Our models are on the CWT singles out, at every scal¢he places where the
instead parametrized by the Hurst exponents, and by condmodulus of the CWT reaches local maxima. Then a skeleton
tions on the decay of the probability distribution functions of lines of maxima is constructed from large to small scales.
(PDF9 of discrete wavelet coefficients. In the hypersurfacesThe sum in Eq(4) is calculated on this skeleton only. The
considered in this paper, definite long range correlations ospectrunD (h) is found from Legendre transforms ¢f, or
anticorrelations appear associated with multifractality. Thisr,. The technique is as follows. Due to the nonhomogeneous
also influences our method of analysis, which stresses a déactality, in the limit|—0, one can writeZy(l) in the
termination of theH exponent, to be followed by the detec- asymptotic form
tion of this multifractality. We point the connections of our
procedures with the techniques based on the thermodynami- z (|)~f d(h)ltha-Dm)] )
cal formalism, due to its role as a framework for important 4 K '
classes of multifractals. ) o )
The paper is organized as follows. Section Il is devoted tol he term with the minimum exponent predominates, so we
the one-dimensional case and its properties. We present thefgive at the Legendre transform
various results that motivate our approach. In Sec. lll, we .
discuss the generalization tbdimensions. We furnish there Tq=minthg—=D(h)] ©®)
supplementary definitions and demonstrations, discuss th[%at can be inverted to give
calculation of the singularity spectrum, and provide an algo- 9
rithm for obtaining .samples of the hypersurfaces. Section IV D(h)=min[hg— 7y]. @
has some concluding remarks. q

By this device, we have the spectrum in terms of the expo-

nents 7,. The same argument holds when using structure

functions. The distinctive feature of a strictly multifractal
In the investigation of the so-called multifractal functions, motion is that the support dd(h) has more than one ele-

a standard procedure is to determine their singularity speanent. In the thermodynamical formalism, this leads to non-

IIl. MODELS IN ONE DIMENSION
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linear dependences @f, or 7, with g. General conditions 1 (t—zjn)
& (15

and some criticism with respect to this technique can be 'pjn(t):\/? o
found in Refs[34,35. The multifractal formalism for func-

tions is built on such quantities a8f(t)| or [(1,[)]. de-  These functions are called discrete wavelets, and are square
noted asyu;. Considering the multifractal as a stochasticinegraple with zero mean, at least. The functipenerat-
process.uy is to be seen as a definition of its incrementaling the wavelets is called the mother wavelet. Often, classes
process in the sense that of wavelets are employed which are orthogonal to polynomi-
als up to a certain degrde with the purpose of detrending
pe=* Wi, ®) data, and studying singularitigsjs the number of vanishing
moments of the wavelet. The sg¥;,} is a wavelet basis,

whereW,, is a filter that cuts off any divergence in the low 4 the giscrete wavelet transformfd this basis is written

frequency power spectrum of, | is an increment param-

eter (scalg, t is a location parameter, and the star means ajn=Djnf=(nl ), (16)

convolution. In the case of fBm, wavelets and the increment

operator are examples of such filt¢&6). and gives information on the behavior of the functibat

We wish to study a class of multifractal motiohk; that  scale 2 and time 2n.

possess a weakened form of self-affinity. THg motions It is possible to work with restrictions of the considered

we are concerned here satisfy the following assumptionamotions ad_?(1) functions, withl CR,l#R. We make such

First, they have the ensemble average restrictions by noting that experiments or simulations get
data during a timeTl, with a sample interval, so that the

|8, |2=ad1?M. (9)  number of sample points isl=T/7. For convenience, we

make T=1, and r=1/N=2"7. Using this information in

Second, expression(14), and assuming compact support for the
wavelets, we can write

Imy(0)=o0. (10 =0 nme2-l_1
From these assumptions, it follows that the two-point corre- WH(t):a¢¢(t)+j7 S, 2 @i, 17

lation of thell,; motion is

where, is the restriction ofly, t0[0,1], az=(¢|my), and
the function¢ is defined as the linear combination

2
T (OTT(9)= 5 (P8P [t=sP). (1)

j=o

This motion can be seen as a generalization of fBm that do ¢(t):j2,l Cjjo(t) (18)
not have zero mean, nor Gaussian statistics. The first conse-

guence is that the motion is not statistically self-affine inthat can be determined from its Fourier transform
general. Indeed, one easily proves from Eii) that

. 2 .
I, (et (cs)=cPI,(H) P (s), (12) Plw)= ml//@w)- (19

i.e., the _mOtiOHfﬂH(Ct) has the same two-point correlation as Hereg is the high pass mirror filter associated with the cor-
the motionc™I1(t). When the motion is self-affine, Eq. responding multiresolutiof86]. In expressior{18), the func-
(12) holds necessarily, but the converse is not true. In factions 4, were also conveniently restricted to the interval

for the self-affine case, we have the stronger property [0,1]. The functiong is called the scaling function.
. We will now use Haar wavelet basis to calculate an exact
Iy(ct)=c"Ily(1), (13 wavelet spectrum fofl . The Haar wavelets are periods of

. ) square waves written as
where the equality means that both sides have the same dis-

i i 1
tribution. 1 (1, telj,

We can deduce exact spectra for tfig motion if we use hi(t)=—= (20)
i - n V2i | -1, tel?
discrete wavelet bases. Wavelets are generally associated ' jn>
with time-scale representations. Lféte aL?(R) function. It h
is shown in Ref[36] the existence of complete seftg;,}  V'¢'¢
such thatf can be expanded as Ijln=[2jn,2j(n+ 12)],
j=© n=ow ) )
f= > 3 apin), (14) 15, =[2/(n+1/2),2/(n+1)]. (22)
J=—® n=—©
For Haar wavelets, one proves, using the expressibhs
the form of the functions,; being and(20), that
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of(H)=]A},IT},|?=Cy2CH DI, (22

whereA;,f=(h;,|f) and

_oj(1-27
CH_(2H+1)(2H+2) '

(23

Expression(22) gives us the scale dependent power spec-
trum in the Haar basis. Note that if an effective frequency
|w|~1=2) is substituted, one finds the expectetw]? ! 2
relation. Except for the constant, this spectrum has the sam 1
well behaved dependence on scalelfipy using any discrete =
wavelet(see Refs[36,37], and references therein for more = 0
details on this aspect

At every scale 2 we can look at the distributioR; of the . . . .
coefficientsa;,. For the monofractalsP; collapses to a 0 1 2 3_ 4 5 6
unique probability distribution, after the coefficients are nor- Time x10*
malized by the standard deviatiary. In other situations,

this is not so because the only constraint express& _ . ;
gives is on the second moments of these distributions. So V\)glth SRA and mSRA glgonthms. These samples hat®ints
and were produced with the same seed for the random number

have a great latitude to choose models presenting multifrac
. : . . ./ generator, and correspond to sample number 15 from the 50 gener-

tality, without affecting the correlations that are essentially :

. . . ated in each group.

linked to H by the expressiorill). However, there is the

question: what are the general conditionsRyrin order that

theTierles(N) be conyergeqt, \(/j\{he:]trm'i ted with the stati single out the one with the slowest decay wixen», noted
€ convergence I1Ssue IS directly reiated wi € StaliSa5E+ | and that with the slowest decay when> —, noted

tics of rare high valued fluctuations. If they are too frequent,asF_ For the rare events, the functiéhbehaves asymp-
we can have divergence caused by their repeated occurrenf:o%ca”y asE* or E-. Thus' the smallest acceptable decay

in the sum. The probability of the event 5@‘ of such rare for these last functions, in order that convergence occurs is
fluctuations can be calculated for each s¢ade

-1

FIG. 1. Monofractal(a) and multifractal(b) motions generated

of the functionsP;. Among all these functions, we can

-a o 1 1
rj=f 'dx Pj(x)+f dx P;(x), (24) Fro)~—=, F (0~—7=, (28)
—® a; X (—X)
with aj=mo;, m being a natural number as big as onewith ¢*>0 being small numbers. Following this result, we
needs. Now the condition for convergence can be expressetsume that n®; decays slower than that indicated in the
using the Borel-Cantelli lemma. If above expression. This assumption allows for a number of
physically important cases, as the ones presenting exponen-
E R (25) tial tails,_not to sp_eak of the Gaussian_ caf&r_n) [21,22,24.
i ' The literature is plenty of works, in which Hurst expo-
nents are used to characterize complex motions. The above
then Prob();, infinitely often)=0. In such a case, for al- discussion indicates that, with great generality, these expo-
most all realizations, there is a maximum absolute value fonents are only connected with the scaling of second mo-
the coefficients which does not excead In consequence, ments, and this is the only information that can be drawn
from linear fits. The fact is that with this single measurement,
2 2 9 oH+1)i one has very few interpretive elements on the physics of the
Ej: En: ajnsﬁj: aj=m CHE;* 2 <o, (26) process because one cannot determine the degree of symme-
try involved. The physical process generating a fractal mo-
which proves convergend&3]. tion must be much simpler, due to the self-affinity, than in
It remains to see in which cases the condition for converthe multifractal case, where something;f does change
gence is valid. Using the expressiof®4) and (25), one  with scale. Since by the value of the Hurst exponent one
draws the conclusion that the convergence happens if, anthnnot quantify the symmetry breaking effect that is taking
only if, the function place, no precise judgment can be made about the scaling,
and in consequence about its implications for the mecha-
nisms of the procesdJlterior information can be obtained
by considering the probability distributions of discrete wave-
let coefficients. The minimum gain with this simple proce-
is integrable in both intervals{«,—a;] and[a;,~). The dure is to clarify the properties of the complex motion. To
fulfillment of this equivalent condition depends on the decayhave this point clear, consider Fig. 1. There one findgjra

F(X)E; P;(x) (27)
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y=1.6711*x + 15.923

FIG. 2. Linear fits for the second moment of the wavelet coef-
ficients. In(a) for sample number 15 of the SRA group, and(n

for sample number 15 of the mSRA group.

1.5

FIG. 4. Probability distributions®; of the wavelet coefficients
a;n in a semilog graph, for the group generated with the SRA algo-

rithm. The parabolas are Gaussians with the same variance of the

distributions.

sample of fBm generated using the successive random addi-

tions (SRA) method[38]. The data forb) is from a modified

for the multifractals. These statistics were obtained from the

version that generates multifractals called here the multifracvavelet coefficients of all samples in each group, and the
tal SRA(MSRA). The data for the fractals and multifractals différences are noticeable. In Fig. 4, the data is well repre-
were generated using the same seeds for the random numii§nted by Gaussiariappearing in the semilog graph as pa-

generator, and those in the figures are numbered 15 of a totdiP0la$ with the same variances of the determined PDFs,

of 50 samples in each group. All 100 samples ha#é

o making clear that the first group is self-affine symmetric. In

points. Figure 2 contains two high quality linear fits of Fig. 5, exponential tails appear showing that the PDFs have a

Iogzaj2 versusj, one for each of the selected samples. Thesé€
plots allow one to find the Hurst exponent using expressio
(22). A result of such estimate for all samples is shown in
Fig. 3. The excellent fit presented does not quantify o
qualify the reported origingSRA and mSRA of the two

groups, except for the fact that they have diverse, thoug

near, values for the Hurst exponent.

The probability densities?; of discrete wavelet coeffi-

maller decay if compared with the Gaussian dasermit-
Jency appeajs In Fig. 6, the variation of the kurtosis of the
probability distributions with the scale is shown for the
onofractal and multifractal cases. As expected, the multi-
fractals have pronounced variation with scale. So this group
presents only a weak self-affinity given by expressing).

Now one can be sure that the data were not produced through
the same mechanisni{g our case, algorithmsor that the

cients are shown in Fig. 4 for the monofractals and in Fig. 5 -
0.35 Y *- . . 4t
L " N °
(EE P AT N o o
= €8 ‘V'ﬂ"' ¢ o “\’,' ' -6
033 v L PR ~
0.32 @ : : . : f:: -8
-0 10 20 30 40 50 =
Sample number = _10}
0.32; " /..\ o
031.[’.\ o ot Il“‘ o® i ’. 'I"' .\_ 1ot
e 6 '\ M2 I| v ¥ 11 Te ¢ "W‘_'
0.3 ®! [ ® * " ..‘ Y & 14 .
0.29'(b) \i ¢ ‘ o & A -0.5
0 10 20 30 40 50

Sample number

nents were calculated using expressi@2). Those in(a) corre-
spond to the SRA group, and those(b) to the mSRA group.

a,
Jn

FIG. 5. Probability distribution®; of the wavelet coefficients
aj, in a semilog graph, for the group generated with the mSRA
FIG. 3. Hurst exponents for all samples generated. The expoalgorithm. The parabolas are Gaussians with the same variance of

tuations.
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6 —e— Monofractal h(x)=minh(x,u). (29)
5.5 —=— Multifractal A
— Gaussian Following this logic, the problem of finding th&(x,u) spec-
5l trum reduces to that of finding the scaling of all unequal sets
Se.0- A multifractal function is then characterized by the
'é’ 45l existence of such unequal sets. In particular, one can have
£ the situation in which the Hder exponenh(x) is homoge-
2 neous, but the direction associated to it varies from point to
- 4 S .
" point in a complicated manner. A cut through such a hyper-

surface would reveal its multifractal nature that is not mani-
fested by using th® (h) spectrum only.
We suggest here the need of this complete directionality
for a full characterization of the spectra of hypersurfaces.
. . . This can be achieved by using a direct generalization of the
25 -15 -10 -5 0 structure function method, in Whicm,,gf(x)zf(xﬂl])
—f(x), and one searches for the scaling exponéptsof

o
o

(%)

FIG. 6. Kurtosis of probability distribution®; of the wavelet
coefficientsa;,, in a semilog graph, for the monofractals and for the o d R
in = q
multifractals. The kurtosis for the multifractals presents pronounced Sq'“(l) d| 5"“f(x)| ’ (30
variation, indicating change of the distribution with scale.
whenl—0. The wavelet method can be generalized by con-

system was not in the same regime when they were meg_ldermg the transform

sured. What is interesting is that this certainty is reached at

very low cost because just a fast wavelet transfofwWT), W,YXO'af(x)Ef ddx 1 xy.0(X) F(X) (31)
an O(n) algorithm, is used to obtain the discrete wavelet

coefficients. It is important to mention that one can also US® ith

the FWT to estimate the singularity spectrudth), even

though the more precise wavelet formalism to this end is 1 _
based on the CWT. The essence of the procedure remains alll U o(X)=0-V —(I)( X Xo)
the same as the referred method, except that instead of the ot \/T |
maxima line representation one uses a discrete wavelet rep-

resentation, with gain in efficiency, which can be helpful for The function® is a smoothing kernel. The partition function
large data. We do not go further on this issue because exters then written

sive information can be found elsewhg&b,29,30,33

(32)

Za.a(h=2 max(y ol )%, (33)

IIl. MULTIFRACTAL HYPERSURFACES
) ) o which scales with exponent, ; (the sum is on the support of

~ We will now proceed with the generalization of the pre- yhq |5cal maxima of the modulus of the wavelet transform
viously discussed motion td dimensions. The important opserve that, as far as there are only point singularities, there
new element introduced whei>1 is direction. We have s no degeneracy of the is maxima. In each scale they are
seen that in one dimension, it is possible to make an ass@guuntable, so that the sum in expressiad) is well defined.
ciation of every processwith an incremental procegs;. In  The case with line singularities or more complex degenerate
higher dimensions, the straightforward generalizationupf  singularities are not appropriately dealt using wavelés

is a quantityu,; which, in general, depends on the direction {ne sake of spectral characterizatioRrobably, a correct way
through the unit vectou. After that, we can use the multi- 5 take into account these situations is by using analyzing
fractal formalism to find direction dependent singularity fynctions such as ridgelets or curvelE®9,40.
spectra. The incremental process now scales (ag, In the explained context, a multifractal function is char-
~ "W and the sets of fractals corresponding to this mul-acterized by the existence of nonlinggr; or 74 ;, for some
tifractal areS;, ;={xe S:h(x,l]):h}, whereSis the support.  directionu. When these exponents are linear functions of
So, an appropriate generalization of tB£h) singularity  but vary with direction, we have only the anisotropy of the
spectrum is a functiom(h,a) for the scaling exponent of scaling properties. The Legendre transforms from which one
the setsS, ;. This spectrum takes into account the regularitycalculates thé (h,u) spectrum are

of f, including direction effect§compare with the formula-
tion in Ref.[32]). The Hdder exponents correspond to the D(h,ﬂ)zmin(qh—gq i), (34)
dominant scaling of the function at a point and can be found 4 '
from h(x,U) using the relation or
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H=(0.9,09,0.9)

D(h,l])=rrain(qh— i) (35) H-(0.1010.)

Let us now introduce, using the inverse discrete wavelet
transform, a class of multifractal hypersurfaces correspond-
ing to the multifractal motion studied in the Sec. Il. A suit-
able point of departure is the known spectrum for the fBm in
d dimensions,

ol

S(w)~ 36 H=(0.1,0.9,0.1) H=(0.9,0.1,0.9)

1
|w|2H+d '
From this spectrum, we expect that the second moments of —
the wavelet coefficients scale a§2"%i. To generate an !

fBm in d dimensions, one just needs to produce the wavelet
coefficients with the Gaussian distributions at every scale
having variances proportional td??* 9 then transform to
the real space.

Along the same line, we define théy(x) hypersurface, B=(0.1.9.1,09)

H=

wherex=(xq, ... Xq), from wavelet coefficients. This can N :
be formalized as follows. Thd dimensional discrete wave-
lets are functions having the form

. 1 [x=2n, Xg—2/ng 2
'ﬁjn(x)—\/?ﬂll/ T ) (37)
FIG. 7. Fractal f t i FWT. Th lu-
wheren=(n,, ... ny) e 7% and G ractal surfaces generated by inverse e resolu

tion is N=512 in all cases. The Hurst exponents are giverHoy
E= e g 39) %(H01,H10,H11)- The first row presents the isotropic strongly an-

’ ticorrelated and strongly correlated cases. The second row mixes
. _ d . ) . . correlation and anticorrelation, with contrasting Hurst exponent in
with e=(ey, ... eq) €{0,1}" being a direction index. The ine vertical direction. In the third row, the contrast is in the diago-
function ¢°= ¢, a one-dimensional scaling function corre- .

sponding to a one-dimensional discrete wavelet basis, and
= is the mother wavelet. This construction provides a
separable orthonormal wavelet basis for the spat@?)
[36]. The order of thes indices is given by the natural se-
guence of the corresponding binary numbers. WheirD, _
° is thed-dimensional scaling function. The 2 1) func- |af,|2~2(2He i, (40)
tions formed wherz # 0 are thed-dimensional mother wave-
lets. Letp be the number of 4in a ¢ index. The number

introduce anisotropy in the hypersurfaces. The condition on
the second moments of the distributid®s is generalized to

—p—1 D=1 ifies the di | ch £ th Finally, we note that, to assure the convergence of the series,
9= p; ' ph/ specll les t eh |agona ¢ arr?cter 0 It edasso:[he PDFs of the coefficients must be subjected to the same
clated mother wavelet, so thgt=0 means the wavelet does ., jition as in the one-dimensional case. The proof is easily

not follow a diagonal, fog=.1, 't, is oriented anng adiag- gone by considering each direction separately, and using the
onal of a square, fog=2, it is oriented along a diagonal of ;1o argument given in Sec. II.
a cube, and so on. _ _ - Figure 7 shows examples of anisotropic bidimensional
_ The hypersurfacél(x) is now defined through the infi- g gptained with this method. The probability distributions
nite series Pj are Gaussians. Following the assumed orderiHg,
=H; is related to the horizontakl,=H, to the vertical,
Hy(x)=> > >, al v, (399 andHz=Hy; to the diagonal. The first row has one case of
ion e strongly anticorrelated fBm, followed by a strongly corre-
lated fBm, that are isotropic. In the second and third rows,
where the coefficienta;; are distributed according the PDFs one sees the results of introducing anisotropy by mixing
P}, wheres#0. Ind>1 dimensions, there is more freedom strong correlation and anticorrelation. In the second row, the
when putting conditions on these PDFs than in one dimenvertical direction has the contrasting Hurst exponent. In the
sion. Here we may also have the situation in which differenthird row, this role is played by the diagonal. This figure
directions have different values bf. Accordingly, we define provides some illustration of the possible textures obtained
the indexH=(H, ... ,H,d_;) such that there is one value in limiting conditions, but it is clear that all intermediate
of H for each wavelet orientation. This is a natural way tocombinations are possible in practice.
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IV. CONCLUSION

We have discussed the use of the discrete wavelet tran
form as a means to produce computer generated multifract%l
hypersurfaces. These multifractals present a correlatio
structure similar to the fBm, and can be anisotropic. They ar
expected to be useful in areas where stochastic fields with

PHYSICAL REVIEW E67, 036702 (2003

Our examples show how one can obtain information on ef-
fects that break an exact self-similarity or self-affinity. The

?ﬁethodology could even be carried to cases where scale

reaks dominate scaling, as for example, when considering
the seafloor surface6].

e
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